Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrical and optical properties of transparent conducting InxGa1-xN alloy films deposited by reactive co-sputtering of GaAs and indium

Identifieur interne : 000143 ( Main/Repository ); précédent : 000142; suivant : 000144

Electrical and optical properties of transparent conducting InxGa1-xN alloy films deposited by reactive co-sputtering of GaAs and indium

Auteurs : RBID : Pascal:14-0090038

Descripteurs français

English descriptors

Abstract

Thin films of InxGa1-xN alloys were deposited by reactive sputtering using a GaAs target, covered partially with indium and co-sputtered with nitrogen. X-ray and electron diffraction studies indicate the formation of single phase InxGa1-xN films at ˜500 °C. Hall effect and resistivity measurements show that the alloy films with x > 0.5 have high carrier concentrations in the range of 1020-1021 cm-3 and mobility of ˜10 cm2 V-1 S-1. Optical measurements of the alloy films show a strong dependence of the band gap on carrier concentration, which is attributed to the Burstein-Moss shift and free carrier effects in the near-infrared region. The values of electron effective mass obtained from plasma resonance data and the Burstein-Moss shift show good agreement. Over a limited composition window of x in the range of 0.5-0.6, the alloy films exhibit low electrical resistivity (≃10-3 Ω-cm) and high transparency in part of the visible and near infrared regions, followed by high reflectance in the infrared region, which show their potential for applications as transparent electrodes in photovoltaic and photonic devices and as heat mirrors.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0090038

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrical and optical properties of transparent conducting In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloy films deposited by reactive co-sputtering of GaAs and indium</title>
<author>
<name sortKey="Yadav, Brajesh S" uniqKey="Yadav B">Brajesh S. Yadav</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Indian Institute of Technology Bombay</s1>
<s2>Mumbai 400076</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Mumbai 400076</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mohanta, P" uniqKey="Mohanta P">P. Mohanta</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay</s1>
<s2>Mumbai 400076</s2>
<s3>IND</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Mumbai 400076</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Srinivasa, R S" uniqKey="Srinivasa R">R. S. Srinivasa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay</s1>
<s2>Mumbai 400076</s2>
<s3>IND</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Mumbai 400076</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Major, S S" uniqKey="Major S">S. S. Major</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Indian Institute of Technology Bombay</s1>
<s2>Mumbai 400076</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Mumbai 400076</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0090038</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0090038 INIST</idno>
<idno type="RBID">Pascal:14-0090038</idno>
<idno type="wicri:Area/Main/Corpus">000054</idno>
<idno type="wicri:Area/Main/Repository">000143</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Burstein Moss effect</term>
<term>Carrier density</term>
<term>Effective mass</term>
<term>Electric resistivity</term>
<term>Electrical conductivity</term>
<term>Electrical properties</term>
<term>Electron diffraction</term>
<term>Electronic properties</term>
<term>Energy gap</term>
<term>Free carrier</term>
<term>Gallium arsenides</term>
<term>Gallium nitride</term>
<term>Hall effect</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium</term>
<term>Indium nitride</term>
<term>Mirrors</term>
<term>Near infrared radiation</term>
<term>Optical properties</term>
<term>Photonic device</term>
<term>Photovoltaic cell</term>
<term>Physical vapor deposition</term>
<term>Quantity ratio</term>
<term>Reactive sputtering</term>
<term>Reflection spectrum</term>
<term>Reflectivity</term>
<term>Resonance</term>
<term>Sputter deposition</term>
<term>Sputtering</term>
<term>Thin films</term>
<term>Transparency</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété électrique</term>
<term>Propriété optique</term>
<term>Couche mince</term>
<term>Pulvérisation réactive</term>
<term>Dépôt physique phase vapeur</term>
<term>Arséniure de gallium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Indium</term>
<term>Dépôt pulvérisation</term>
<term>Diffraction électron</term>
<term>Effet Hall</term>
<term>Conductivité électrique</term>
<term>Densité porteur charge</term>
<term>Bande interdite</term>
<term>Propriété électronique</term>
<term>Effet concentration</term>
<term>Effet de Burstein Moss</term>
<term>Porteur libre</term>
<term>Rayonnement IR proche</term>
<term>Masse effective</term>
<term>Résonance</term>
<term>Résistivité électrique</term>
<term>Transparence</term>
<term>Facteur réflexion</term>
<term>Spectre réflexion</term>
<term>Dispositif photovoltaïque</term>
<term>Miroir</term>
<term>Nitrure d'indium</term>
<term>Nitrure de gallium</term>
<term>Pulvérisation irradiation</term>
<term>InxGa1-xN</term>
<term>7350</term>
<term>7866</term>
<term>8115C</term>
<term>8105E</term>
<term>Dispositif photonique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thin films of In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloys were deposited by reactive sputtering using a GaAs target, covered partially with indium and co-sputtered with nitrogen. X-ray and electron diffraction studies indicate the formation of single phase In
<sub>x</sub>
Ga
<sub>1-x</sub>
N films at ˜500 °C. Hall effect and resistivity measurements show that the alloy films with x > 0.5 have high carrier concentrations in the range of 10
<sup>20</sup>
-10
<sup>21</sup>
cm
<sup>-3</sup>
and mobility of ˜10 cm
<sup>2</sup>
V
<sup>-1</sup>
S
<sup>-1</sup>
. Optical measurements of the alloy films show a strong dependence of the band gap on carrier concentration, which is attributed to the Burstein-Moss shift and free carrier effects in the near-infrared region. The values of electron effective mass obtained from plasma resonance data and the Burstein-Moss shift show good agreement. Over a limited composition window of x in the range of 0.5-0.6, the alloy films exhibit low electrical resistivity (≃10
<sup>-3</sup>
Ω-cm) and high transparency in part of the visible and near infrared regions, followed by high reflectance in the infrared region, which show their potential for applications as transparent electrodes in photovoltaic and photonic devices and as heat mirrors.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>555</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrical and optical properties of transparent conducting In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloy films deposited by reactive co-sputtering of GaAs and indium</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>International Symposia on Transparent Conductive Materials, October 2012</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>YADAV (Brajesh S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MOHANTA (P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SRINIVASA (R. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MAJOR (S. S.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>KIRIAKIDIS (George)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Physics, Indian Institute of Technology Bombay</s1>
<s2>Mumbai 400076</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay</s1>
<s2>Mumbai 400076</s2>
<s3>IND</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay</s1>
<s2>Mumbai 400076</s2>
<s3>IND</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Physics Dpt. Univ. of Crete, Voutes</s1>
<s2>Heraklion, Crete 70013</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>179-184</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000505786660340</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>47 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0090038</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Thin films of In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloys were deposited by reactive sputtering using a GaAs target, covered partially with indium and co-sputtered with nitrogen. X-ray and electron diffraction studies indicate the formation of single phase In
<sub>x</sub>
Ga
<sub>1-x</sub>
N films at ˜500 °C. Hall effect and resistivity measurements show that the alloy films with x > 0.5 have high carrier concentrations in the range of 10
<sup>20</sup>
-10
<sup>21</sup>
cm
<sup>-3</sup>
and mobility of ˜10 cm
<sup>2</sup>
V
<sup>-1</sup>
S
<sup>-1</sup>
. Optical measurements of the alloy films show a strong dependence of the band gap on carrier concentration, which is attributed to the Burstein-Moss shift and free carrier effects in the near-infrared region. The values of electron effective mass obtained from plasma resonance data and the Burstein-Moss shift show good agreement. Over a limited composition window of x in the range of 0.5-0.6, the alloy films exhibit low electrical resistivity (≃10
<sup>-3</sup>
Ω-cm) and high transparency in part of the visible and near infrared regions, followed by high reflectance in the infrared region, which show their potential for applications as transparent electrodes in photovoltaic and photonic devices and as heat mirrors.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C50</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Pulvérisation réactive</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Reactive sputtering</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Dépôt physique phase vapeur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Physical vapor deposition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Diffraction électron</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Electron diffraction</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Effet Hall</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Hall effect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Effet concentration</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Quantity ratio</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Effet de Burstein Moss</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Burstein Moss effect</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Efecto Burstein Moss</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Porteur libre</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Free carrier</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Portador libre</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Rayonnement IR proche</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Near infrared radiation</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Masse effective</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Effective mass</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Résonance</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Resonance</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Résistivité électrique</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Electric resistivity</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Transparence</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Transparency</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Facteur réflexion</s0>
<s5>39</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Reflectivity</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Spectre réflexion</s0>
<s5>40</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Reflection spectrum</s0>
<s5>40</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Espectro reflexión</s0>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>41</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>41</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>41</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Miroir</s0>
<s5>42</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Mirrors</s0>
<s5>42</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>43</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>43</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>43</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>44</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>44</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>44</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>Pulvérisation irradiation</s0>
<s5>45</s5>
</fC03>
<fC03 i1="31" i2="3" l="ENG">
<s0>Sputtering</s0>
<s5>45</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>InxGa1-xN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>7350</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>8105E</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="37" i2="3" l="FRE">
<s0>Dispositif photonique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="37" i2="3" l="ENG">
<s0>Photonic device</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="37" i2="3" l="SPA">
<s0>Dispositivo fotónico</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>TCM2012 International Symposia on Transparent Conductive Materials</s1>
<s3>Hersonissos, Crete GRC</s3>
<s4>2012-10-25</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000143 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000143 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0090038
   |texte=   Electrical and optical properties of transparent conducting InxGa1-xN alloy films deposited by reactive co-sputtering of GaAs and indium
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024